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On growth and formlets: Sparse multi-scale coding of planar shape☆

James H. Elder a,⁎, Timothy D. Oleskiw b, Alex Yakubovich a, Gabriel Peyré c

a Centre for Vision Research, York University, Toronto, Canada
b Department of Applied Mathematics, University of Washington, Seattle, WA, United States
c CEREMADE, Université Paris-Dauphine, Paris, France

a b s t r a c ta r t i c l e i n f o

Article history:
Received 20 August 2012
Accepted 9 November 2012

Keywords:
Planar shape
Deformation
Sparse coding
Contour completion

We propose a sparse representation of 2D planar shape through the composition of warping functions, termed
formlets, localized in scale and space. Each formlet subjects the 2D space in which the shape is embedded to a
localized isotropic radial deformation. By constraining these localized warping transformations to be
diffeomorphisms, the topology of shape is preserved, and the set of simple closed curves is closed under any se-
quence of these warpings. A generative model based on a composition of formlets applied to an embryonic
shape, e.g., an ellipse, has the advantage of synthesizing only those shapes that could correspond to the bound-
aries of physical objects. To compute the set of formlets that represent a given boundary, we demonstrate a
greedy coarse-to-fine formlet pursuit algorithm that serves as a non-commutative generalization of matching
pursuit for sparse approximations. We evaluate our method by pursuing partially occluded shapes, comparing
performance against a contour-based sparse shape coding framework.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Shape information is important for a broad range of computer vision
problems. For some detection and recognition tasks, discriminative
models that use non-invertible shape codes (e.g., [1]) can be effective.
However, many other tasks call for a more complete generative model
of shape. Examples include: (1) shape segmentation, recognition, and
tracking in cluttered scenes, where shapes must be distinguished not
just from each other, but from ‘phantom’ shapes formed by conjunctions
of features frommultiple objects [2]; (2) modeling of shape articulation,
growth, and deformation; and (3) modeling of shape similarity.

Our paper concerns the generative modeling of natural 2D shapes
in the plane, represented by their 1D boundary. We restrict our
attention to simply-connected shapes whose boundaries are smooth,
simple, and closed curves. We seek a generative shape model that
satisfies a set of properties that seem to us essential:

1. Completeness. The model can produce all shapes.
2. Closure. The set of valid shapes is closed under the generative

model. In other words, the model generates only valid shapes.
3. Composition. Complex shapes are generated by combining simpler

components.

4. Sparsity. Good approximations of shape can be generated with rel-
atively few components.

5. Progression. Approximations can be improved by incorporating
more components.

6. Locality. Components are localized in space.
7. Scaling. Components are tuned to specific scales and are

self-similar over scale.
8. Region & Contour. Components can capture both region and

contour properties in a natural way.

The need for completeness is self-evident if the system is to be gen-
eral. Closure is critical if we hope to capture the statistics of natural
shape in a set of hidden generative variables. Without closure, heuris-
tics must be used to avoid the generation of invalid shapes, e.g.,
bounding contours with self-intersections. Aside from the resulting in-
efficiency, this creates a discrepancy between the statistical structure
encoded by the model, and samples the model produces. In other
words, the model cannot fully capture the statistics of natural
boundaries.

Composition (here we use the word in a general sense) is impor-
tant if we are to handle the richness and complexity of natural shapes
while maintaining conceptual simplicity. Given the high dimensional-
ity of natural shapes, sparsity is necessary in order to store shape
models [3]. Sparsity also implies that essential shape features have
been made explicit [4]. Progression allows the complexity of the
model to be matched to the difficulty of the task, facilitating
real-time operation and coarse-to-fine optimization.

Locality is a natural goal, since a first-order property of natural im-
ages is local coherence. Nearby points on the surface of an object tend
to have similar reflectance, attitude, and illumination. Locality also
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allows for greater robustness to occlusion, since components are
more likely to be either entirely visible or removed altogether rather
than distorted. Scaling allows invariance over object size, and allows
shape features of different sizes to be captured separately.

Finally, it has long been recognized that planar shape description
requires attention to both region and contour properties [3]. Some
shape properties, e.g., curvature, are naturally described by the
bounding contour. Others, e.g., necks, are best described as region
properties, since they involve points that are proximal in the image
but distant along the contour. A good generative model will allow
both to be encoded in a natural way.

We begin by reviewing prior models, with an eye to each of these
essential properties.

2. Prior work

Earlymodels that used chain coding or splines to encode shapes were
not generative and failed to succinctly capture global properties of shape.
Fourier descriptor, moment, and PCA bases have the potential to be
generative, but since all components are global, they are not robust to
occlusion or local deformation [5,3,6]. For these reasons, most modern
approaches attempt to capture structure at intermediate scales, or over
a range of scales. Most of these models can be crudely partitioned into
two classes: contour-based and symmetry-based.

2.1. Contour-based models

Attneave [4] pointed to the concentration of information in the
curvature of the bounding contour, and suggested the potential for
sparse descriptions based on points of extremal curvature magnitude.
Hoffman and Richards [7] linked curvature to the part structure of
shapes, proposing that parts are perceptually segmented at negative
minima of curvature. Mokhtarian and colleagues emphasized the
encoding of curvature inflections across scale space for the purpose
of shape recognition [8].

While none of these early models are generative, Dubinskiy and
Zhu [9] have more recently proposed a contour-based shape repre-
sentation that is both generative and sparse. The theory is based
upon the representation of a shape by a summation of component
shapelets. A shapelet is a primitive curve defined by Gabor-like
coordinate functions that map arc length to the image, which can be
represented by the complex plane.

Specifically, a shapelet γ(t;σ,μ) is a mapping of arc length t∈ [0,1]
to the image, represented by the complex plane. Each shapelet is
parameterized by an arc length position parameter μ and a scale
parameter σ, and has the specific form:

γ t;σ ; μð Þ ¼ exp − t−μð Þ2
2σ2

 !
cos

2π
σ

t−μð Þ
� �

þ i sin
2π
σ

t−μð Þ
� �� �

:

ð1Þ

Fig. 1 shows the coordinate functions and trace of an example
shapelet. Note that the planar curves generated by γ(t;σ,μ) are
identical on t∈R up to a linear reparameterization, i.e., they are
self-similar. However, these functions are only approximately
self-similar on any finite domain over which a curve will be defined.
Also, note that γ does not in general generate a simple closed curve.
In fact, as σ→0, the number of sinusoidal periods on the interval
t∈ [0,1] explodes, generating an infinite number of self-intersections.

Shifting and scaling shapelets over arc length produces a basis set
sufficient to generate arbitrarily complex shapes. In particular, a
K-shapelet curve ΓK(t) can be defined as:

ΓK tð Þ ¼ z0 þ
XK
k¼1

Akγ t;σk; μkð Þ; ð2Þ

where the 2×2 matrix Ak applies an affine transformation to each
shapelet in image space prior to linear combination.

Dubinskiy & Zhu's shapelet model has many positive features.
Components are localized, albeit only in arc length, and scale is
made explicit in a natural way. However, like all contour-based
methods, the shapelet theory does not explicitly capture regional
properties of shape. Perhaps most crucially, the model does not
respect the topology of object boundaries: sampling from the model
will in general yield non-simple, i.e., self-intersecting, curves
(Fig. 2). This violates the closure criterion identified in Section 1.

2.2. Symmetry-based models

Blum and colleagues [10,11] introduced the symmetry axis repre-
sentation of shape in which a planar shape is represented by a 1D
skeleton function and associated 1D radius function. The symmetry
axis representation led to related representations [12] which found
application in medical imaging and other domains.

Subsequent work incorporated notions of scale and time with
symmetry axis descriptions. Leyton [13] related symmetry axis de-
scriptions to causal deformation processes acting upon prototype
shapes. In this view, symmetry axes, terminating at curvature extre-
ma on the boundary, are understood as records of these deformation
processes. Subsequent work on curve evolution methods and
shock-graph representations [14,15] has provided a more complete
theory of region-based shape representation that has been broadly
applied.

Despite the many appealing features of symmetry axis and shock-
graph representations, these methods, in general, are not sparse. In
fact, the description of each shape typically requires more storage,
and little emphasis has been placed on making symmetry axis repre-
sentations generative [3]. Recent work of Trinh and Kimia exploring
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Fig. 1. An example shapelet.

Fig. 2. Sampling from the shapelet model generally yields non-simple curves.
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generative and sparse models based upon shock graphs comes some
way in overcoming these limitations [16]. However, the constraints
required to enforce the closure property, i.e., topological constraints,
are fairly complex, and the full potential of the theory has yet to be
explored.

A related approach to shape representation (e.g., [17,18]) employs
finite element modelling techniques to code the bounding contour in
terms of the free vibration modes of the shape, which are said to
correspond to the object's generalized axes of symmetry. The main
difficulty in developing this approach into a generative model is
that points on the boundary are coupled only locally in the intrinsic
coordinates of the shape boundary, thus nothing constrains the
topology of generated shapes.

2.3. Hybrid approaches

Recognizing the merits and limitations of both contour-based and
symmetry-based approaches, Zhu [19] developed an MRF model for
natural 2D shape, employing a neighborhood structure that can
directly encode both contour-based and region-based Gestalt princi-
ples. The theory is promising in many respects. It is generative,
providing an explicit probabilistic model, and it captures both region
and contour properties. It is not sparse, however, and because the un-
derlying graph is lifted from the image plane, there is nothing in the
model that encodes the topological constraint that the boundary be
simple, i.e., non-intersecting. Instead, when sampling from the
model, a ‘firewall’ is employed to prevent intersections. Again, this
is inefficient, and it also creates a disconnect between the generative
variables encoding the model and the sampling distribution.

2.4. Coordinate transformations

A different class of model that could also be called region-based in-
volves the application of coordinate transformations of the planar
space in which a shape is embedded. This idea can be traced back at
least to D'Arcy Thompson, who considered specific classes of global
coordinate transformations of the plane to model the relationship
between the shapes of different animal species [20]. In the field of com-
puter vision, Jain et al. [21] were among the first to extend this idea to
more general deformations with a complete Fourier deformation basis
that they used tomatch observed shapes to stored prototypes. However,
this Fourier basis fails to satisfy the locality property, and as a potential
generative model it does not satisfy the closure property: random
combinations of Fourier deformation components will not in general
preserve the topology of the prototype curve.

More recently, Sharon and Mumford [22] have explored confor-
mal mappings as global coordinate transformations between planar
shapes. However, although the Riemann mapping theorem guaran-
tees that any simple closed curve can be conformally mapped to
the unit circle, conformal mappings do not in general preserve the
topology of embedded contours. Hence, despite the computational
constraints imposed by the Cauchy–Riemann equations, we again
have the problem that the set of valid bounding contours is not
closed under these transformations, making generative modeling
difficult.

2.5. Localized diffeomorphisms: formlets

In considering prior generative shape models, the goal that seems
most elusive is that of closure: ensuring that the model generates
only valid shapes. Our approach originates with the observation
that, while general smooth coordinate transformations of the plane
will not preserve the topology of an embedded curve, it is straightfor-
ward to design a specific family of diffeomorphic transformations that
will. It then follows immediately by induction that a generative model

based upon arbitrary sequences of diffeomorphisms will satisfy the
closure property.

In this paper we specifically consider a family of diffeomorphisms
we call formlets. A formlet is a simple, isotropic, radial deformation of
planar space that is localized within a specified circular region of a
selected point in the plane. The family comprises formlets over all
locations and spatial scales. While the gain of the deformation is also
a free parameter, it is constrained to satisfy a simple criterion that guar-
antees that the formlet is a diffeomorphism. Since topological changes
in an embedded figure can only occur if the deformation mapping is
either discontinuous or non-injective, these diffeomorphic deforma-
tions are guaranteed to preserve the topology of embedded figures.
Thus the model satisfies the closure property.

By construction, formlets satisfy the desired locality and scaling
properties. It is straightforward to show that the model also satisfies
the composition, completeness, and progression properties in that
an arbitrary shape can be approximated to increasing precision by
composing an appropriate sequence of localized formlets. Since each
formlet may be centered either near the contour, near a symmetry
axis, or at any other location in the plane, the model has the potential
to capture both region and contour properties directly.

Our formlet model is closely related to recent work by
Grenander et al. [23], modeling changes to anatomical parts over
time. Their representation, called Growth by Random Iterated
Diffeomorphisms (GRID), models growth as a sequence of local
and radial deformations. They demonstrate their model by tracking
growth in the rat brain, as revealed in sequential planar sections
of MRI data.

In the present paper we explore the possibility that these ideas
could be extended to model not just differential growth between
sequential shapes, but to serve as the basis for a generative model
over the entire space of smooth shapes, based upon a universal
embryonic shape in the plane such as an ellipse.

Elements of the present paper were first reported at CVPR [24].
The main contributions of this conference paper were:

1. We illustrated the completeness and closure properties of the
formlet model through random generation of sample shapes.

2. To solve the inverse problem of modeling given shapes, we devel-
oped and applied a generalization of matching pursuit, which selects
the sequence of formlets that minimizes approximation error. We
demonstrated that this formlet pursuit algorithm allows for progres-
sive approximation of shape, while preserving topological properties.

3. We assessed the robustness of the formlet model to occlusion by
evaluating it on the problem of contour completion. We found
that the model compares favorably with the contour-based
shapelet model [9] on this important problem.

In the present paper we elaborate substantially on these
contributions, including full derivations and complete implemen-
tation details. But we also build on this work with several impor-
tant new contributions:

1. We introduce a method for handling analytically computed optimal
gain values that exceed the diffeomorphism bounds.

2. We develop and evaluate an improved parameter optimization
method called dictionary descent, and show that it increases
accuracy by 11% and decreases run time by 42%, relative to standard
dictionary pursuit.

3. We provide derivations for the Jacobian required for this new
dictionary descent method.

4. We develop, evaluate and compare several alternative mathemat-
ical formulations of the formlet function.

5. We report statistics of formlet model parameters for our database
of animal shapes, demonstrating coarse-to-fine scaling properties
and an interesting anisotropy in the location distribution.
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3. Formlet coding

3.1. Formlet bases

We represent the image in the complex plane C, and define a
formlet f : C→C to be a diffeomorphism of the complex plane local-
ized in scale and space. Such a deformation can be realized by center-
ing f about the point ζ∈C and allowing f to deform the plane within a
σ∈Rþð Þ-region of ζ. Our Gabor-inspired deformation is defined as

f z; ζ ;σ ;αð Þ ¼ ζ þ z−ζ
z−ζj jρ z−ζj j;σ ;αð Þ; where

ρ r;σ ;αð Þ ¼ r þ α sin
2πr
σ

� �
exp

−r2

σ2

 !
:

ð3Þ

Thus each formlet f : C→C is a localized isotropic and radial deforma-
tion of the plane at location ζ and scale σ. The magnitude of the
deformation is controlled by the gain parameter α∈R. Fig. 3 demon-
strates formlet deformations of the planewith positive and negative gain.

3.2. Diffeomorphism constraint

Without any constraints on the parameters, these deformations,
though continuous, can fold the plane on itself, changing the topology
of an embedded contour. In order to preserve topology, we must
constrain the gain parameter to guarantee that each deformation is a
diffeomorphism. As the formlets defined in Eq. (3) are both isotropic
and angle preserving, it is sufficient to require that the radial deformation
ρ be a diffeomorphism of Rþ, i.e., that ρ(r;σ,α) be strictly increasing in r:

∂
∂r ρ r;σ ;αð Þ > 0

⇒ α
∂
∂r sin

2πr
σ

� �
exp

−r2

σ2

 !
> −1

⇒
2α
σ

exp − r2

σ2

 !
π cos

2πr
σ

� �
− r

σ
sin

2πr
σ

� �� �
> −1:

ð4Þ

For αb0, it is easy to see that the minimal slope of ρ is attained as
r→0+. Evaluating Eq. (4) at r=0 thus yields the lower-bound on the
gain α:

α > − σ
2π

: ð5Þ

For positive α, the location of the minimum in ρ′(r) does not have
a closed form solution, but can be computed numerically:

α
˜̃
<0:1956σ : ð6Þ

Thus the diffeormorphism constraint is:

α∈σ − 1
2π

;0:1956
� �

: ð7Þ

By enforcing this constraint, we guarantee that the formlet
f(z,ζ,σ,α) is a diffeomorphism of the plane. Hence, such a formlet
acting on a curve embedded in the plane will be a homeomorphism.
In particular, let Γ be the continuous mapping

Γ : 0;1½ �→C: ð8Þ

Recall that Γ is simple if the mapping is injective, and closed by
permitting the equality Γ(0)=Γ(1). Since a formlet f satisfying
Eq. (7) is bicontinuous, if Γ is simple and closed, the deformed curve

Γ f tð Þ ¼ f Γ tð Þð Þ ð9Þ

will also be simple and closed.
Fig. 4(a) and (b) show the radial deformation function ρ(r;σ,α) as

a function of r for a range of gain α and scale σ values respectively.
Fig. 4(c) and (d) show the corresponding trace of the formlet
deformation of an ellipse in the plane.

3.3. Formlet composition

The power of formlets is that they can be composed to produce
complex shapes while preserving topology. We define the forward
formlet composition problem as follows. Given an embryonic shape
Γ0(t) and a sequence of K formlets {f1… fK} drawn from a formlet dic-
tionaryD, determine the resulting deformed shape ΓK(t). The problem
is well-posed because the set of simple closed curves is closed under
formlet deformation: multiple formlets can be composed to generate
complex shape transformations. Thus,

ΓK tð Þ ¼ f K ∘f K−1∘…∘f 1ð Þ Γ0 tð Þ
� �

: ð10Þ

Fig. 5 shows an example of forward composition from a circular
embryonic shape, where the formlet parameters ζ,σ, and α have
been randomly selected. Note that a rich set of complex shapes is
generated without leaving the space of valid shapes (simple, closed
contours).

A more difficult but interesting problem is inverse formlet compo-
sition: given an observed shape Γobs(t), determine a sequence of K
formlets {f1… fK}, drawn from a formlet dictionary D, that best
approximate Γobs(t) by minimizing some reconstruction error ξ.
Here we measure error as the L2 norm of the residual:1

ξ Γobs; ΓK
� �

¼
������Γobs tð Þ−ΓK tð Þ

��� 2
2 ¼ ∫1

0 Γobs tð Þ−ΓK tð Þ
� �

Γobs tð Þ−ΓK tð Þ� �
dt:

���
ð11Þ

4. Formlet pursuit

4.1. Dictionary method

As a first attempt to estimate the optimal formlet sequence
{f1… fK}, we propose a version of matching pursuit for sparse approx-
imation [25], replacing the linear summation of elements by a
non-commutative composition of formlet components. Algorithm 1
shows the flow of the formlet pursuit algorithm.

a) Expansion (    > 0) b) Compression (    < 0)

Fig. 3. Example formlet deformations. The location ζ of the formlet is indicated by the
asterisk.

1 For notational simplicity, we treat contours as continuous functions of arc length t.
In practice, we represent contours as 128-point vectors. All integrals map to summa-
tions in a straightforward manner.
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Algorithm 1. Formlet pursuit of Γobs.

Given an observed target shape Γobs, we initialize the model as a
128-point polygon sampling the unit circle, and form a 1:1 correspon-
dence between the model and target points that remains fixed
throughout pursuit. We next apply an affine transformation to the

model to generate an embryonic elliptical shape Γ0 minimizing the
L2 error ξ(Γobs, f(Γ0)).

4.1.2. Formlet selection
At iteration k of the formlet pursuit algorithm, we select the

formlet fk(z;ζk,σk,αk) that, when applied to the current model Γk−1,
maximally reduces the approximation error:

f k ¼ argmin
f∈D

ξ Γobs; f Γk−1
� �� �

: ð12Þ

This is a difficult non-convex optimization problem, and experi-
mentation with gradient descent methods has shown that the formlet
parameter space can have many local minima. One saving grace is
that the formlet transformation is linear with respect to the gain α,

r

(r)

a)     with gain
 variation

r

(r)

b)     with scale
variation

C

c)    with gain 
variation

C

d)    with scale 
variation

Fig. 4. Formlet transformations as a function of scale and gain. Dashed lines denote invalid formlet parameters outside the diffeomorphism bounds of Eq. (7).

Fig. 5. Shapes generated by random formlet composition over the unit circle. The first two rows show the result of applying 5 successive random formlets. The asterisk and circle
indicate formlet location ζ and scale σ, respectively. The bottom row shows some example shapes produced from the composition of many random formlets.

Initialization: define    0 = A  0 + z0 to be a best matching ellipse
approximating    obs

for k = 1, . . . , K do
Optimal formlet: compute maximal error reducing transformation

fk = argmin    (  obs, f (  k−1))
f∈D

Update approximation: apply optimal formlet

  k = fk(  k−1)

Γ Γ

Γ

ΓΓ

Γ

Γ

ξ

4.1.1. Initialization
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allowing α to be recovered analytically. Specifically, consider an
alternative but equivalent representation of the formlet described
by Eq. (3):

f z; ζ ;σ ;αð Þ ¼ zþ α⋅g z−ζ ;σð Þ where

g zζ ;σ
� �

¼ zζ

zζ
��� ��� sin

2π zζ
��� ���
σ

0
@

1
A expð−

zζ
��� ���2
σ2 Þ:

ð13Þ

In Appendix A we show that, if we fix both the formlet location ζ
and scale σ, the optimal unconstrained gain α∗ for formlet fk is given by

α� ¼
Γobs−Γk−1

; g Γk−1−ζ ;σ
� �D E

dt������g Γk−1−ζ ;σ
� �������2

2

ð14Þ

where 〈⋅,⋅〉 is the inner product on functions f : 0;1½ �→C given in
Eq. (A.3).

One complication is that Eq. (14) may yield a gain value α∗ that
does not satisfy the diffeomorphism constraint given by Eq. (7). How-
ever, from Eqs. (3) and (11) it can be seen that the error is a quadratic
function of the gain α. Thus the optimal constrained gain αc

∗ for given
ζ and σ parameters is simply the optimal unconstrained gain
α∗ expressed by Eq. (14), thresholded by the diffeormorphism
constraints:

α�
c ¼

αl for α�
< αl

α� for αl ≤α�≤αu
αu for α�

> αu;

8<
: ð15Þ

where

αl ¼ 2πð Þ−1σ

and

αu≈0:1956σ :

Thus search for the optimal formlet can proceed by sampling from
a dictionary over location ζ and scale σ parameters, computing the
optimal constrained gain αc

∗ in each case, and then selecting the
resulting formlet that yields minimum error.

Fig. 6 shows an example of formlet pursuit with this dictionary on
an example animal shape.

4.2. Dictionary descent method

While the formlet pursuit method has the advantage of simplicity,
it is far from optimal, as it ignores most smoothness properties that
the error function might enjoy, aside from the quadratic dependence
upon the gain α. As a consequence one must face the tradeoff
between accuracy, which requires that the parameter space be
sampled finely, and speed, which limits the capacity of the dictionary.

We can potentially improve upon the standard dictionary method
by employing a smaller dictionary, and initiating a local gradient
descent search from the m most promising formlets to determine
the formlet parameters that locally minimize the error function.

Fig. 7 compares pursuit for the standard dictionary and dictionary
descent methods on a particular example animal shape: the higher
accuracy of the dictionary descent method is evident. Table 1 shows
the performance of the two methods on the entire shape dataset.
The dictionary descent method improves accuracy by roughly 11%,
and runs about 42% faster than standard pursuit. We use the dictio-
nary descent method in our evaluation below. An implementation
is available at www.elderlab.yorku.ca/formlets.

5. Implementation details

5.1. Shape dataset

To explore the inverse problem of constructing formlet represen-
tations of planar shapes, we employ a database consisting of
391 blue-screened images of animal models from the Hemera
Photo-Object database. The boundary of each object was sampled at

Fig. 6. Formlet pursuit of an example animal shape. We first show the least-squares ellipse embryo Γ0(t), and the models Γk, where k=1,2,3,4,8,16,and 32. The last curve shows the
model Γ32 without the target curve Γobs.

Fig. 7. Pursuit of an example animal shape with standard dictionary search (top row) and dictionary descent (bottom row) for K=1, 2, 4, 8, and 16.

6 J.H. Elder et al. / Image and Vision Computing 31 (2013) 1–13
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128 points at regular arc length intervals. Each resulting polygon was
then shifted to have 0 mean and scaled to have unit L2 norm in both
vertical and horizontal directions:

∫1
0Re Γobs tð Þ

� �2
dt ¼ ∫1

0 Im Γobs tð Þ
� �2

dt ¼ 1: ð16Þ

The full dataset of object shapes used in this paper is available at
www.elderlab.yorku.ca/formlets.

5.2. Dictionary method: discretization

To evaluate this formlet pursuit algorithm, we constructed a
dictionary consisting of a regular sampling of the position parameter
ζ on a 64×64 grid roughly 4 times the extent of the average shape,
and the scale parameter σ at16 regularly-spaced values over (0,0.8].

5.2.1. Tuning the dictionary descent method
Since our objective function is the L2-norm of the residual error

between the observed curve and the approximation, we employed
the MATLAB function lsqnonlin(), which is optimized for non-linear
least squares problems, and compute the Jacobian of the objective
function analytically (Appendix B). We tuned the parameters of our
Dictionary Descent method in stepwise fashion. First, we determined
appropriate values for the tolerance parameters xTol and fTol of
lsqnonlin(), which determine the stopping criteria for the parameters
and error function, respectively. We employed a sparse dictionary,
sampling the position parameter ζ on a 16×16 grid, and the scale
parameter σ at 4 regularly-spaced values over (0,0.8]. We initiated
descent at the m=100 lowest error solutions. Using a small subset
of our animal dataset containing only four animal shapes, we
performed a grid search in log space over the xTol and fTol parameters
in the range 10−1 to 10−9, computing the average running time and
L2 error for a 32-formlet approximation. All experiments were
conducted on a Mac Pro with a 2.66 GHz quad-core Intel Xeon pro-
cessor, running MATLAB R2009b.

The results are shown in Table 2. Error was found to be minimized
for parameter values of xTol=10−3, fTol=10−6: we used these
values for all further experiments.

Second, we optimized the density of the dictionary and numberm
of dictionary formlets selected for descent, using the descent param-
eters optimized above, the same 4 training shapes, and 32-formlet
approximation. The running time and accuracy results are shown in
Tables 3 and 4 respectively. Sampling ζ on a 51×51 grid, the scale pa-
rameter σ at 13 values, and launchingm=25 descents from the most

promising formlets, we found that for these four training images we
could improve the accuracy over the standard dictionary method by
a factor of more than two, while saving roughly 30% in computation
time.

Interestingly, we found that tightening tolerance parameters,
increasing the dictionary density, or increasing the number of deploy-
ments of the optimizer did not always decrease the error. However, at
a given iteration, error did decrease monotonically as a function of
each of these parameters, as expected. Thus the non-monotonic
variation in error with these parameters appears to reflect the
non-optimality of the greedy pursuit algorithm. In other words,
selecting the formlet that minimizes the residual at stage i will not
necessarily lead to the smallest error at stage k> i.

6. Evaluation

To evaluate and compare shape models, we address the problem
of contour completion, using our animal shape dataset. In natural
scenes, object boundaries are often fragmented by occlusion and
loss of contrast: contour completion is the process of filling in the
missing parts. Completion can also be an important component of
perceptual organization algorithms: given one or more partial
contour hypotheses, completion can be used to estimate the locations
of missing parts. These estimates can then guide search for corrobo-
rating evidence.

We compare our formlet model with the shapelet model de-
scribed in Section 2.1 [9]. For each shape in the dataset, we simulate
the occlusion of a 10% or 30% continuous section of the contour, and
allow the two methods to pursue only the remaining visible portion.

The rate of convergence of both formlet and shapelet methods de-
pends upon how the parameters are sampled. For formlet pursuit, we
use the dictionary descent method described in Section 4.2. For the
shapelet method, we used the standard dictionary method of
Dubinskiy et al. [9], optimizing performance by sampling as finely as
possible given time constraints. The shapelet representation assumes
an arc length representation of the curves on t∈ [0,1], and each
shapelet component has an arc length position μ and scale σ. We
sampled the position parameter μ at 128 regularly-spaced values

Table 1
Comparison of dictionary and dictionary descent methods on entire animal dataset.

Optimization method L2 error Run time (min)

Dictionary 0.00535 1.9
Dictionary descent 0.00476 1.1

Table 3
Average running time per shape (min) for a 32-formlet model, as a function of dictio-
nary size n and number of descents m.

m/n 642×16 582×14 512×13 452×11 382×10 322×8 262×6 192×5

0 1.28 0.93 0.68 0.45 0.29 0.16 0.09 0.04
1 1.38 1.01 0.74 0.50 0.33 0.21 0.11 0.07
5 1.44 1.06 0.78 0.55 0.38 0.24 0.18 0.13
10 1.49 1.10 0.84 0.60 0.44 0.31 0.25 0.20
15 1.56 1.17 0.90 0.67 0.50 0.37 0.32 0.28
20 1.60 1.23 0.95 0.73 0.56 0.42 0.41 0.35
25 1.67 1.28 1.01 0.78 0.62 0.48 0.47 0.42
30 1.72 1.34 1.07 0.84 0.68 0.55 0.53 0.51

Table 2
Average L2 error (×100) for a 32-formlet model, as a function of the gradient descent termination criteria.

fTol/xTol 1E−01 1E−02 1E−03 1E−04 1E−05 1E−06 1E−07 1E−08 1E−09

1E−01 6.86 6.31 6.54 6.54 6.54 6.54 6.54 6.54 6.54
1E−02 5.68 5.26 5.11 5.02 5.02 5.02 5.02 5.02 5.02
1E−03 5.91 4.66 4.04 4.16 4.16 4.16 4.16 4.16 4.16
1E−04 5.80 3.65 4.02 3.72 3.72 3.72 3.72 3.72 3.72
1E−05 5.75 3.69 3.66 3.73 3.90 3.90 3.90 3.90 3.90
1E−06 5.75 3.69 3.52 3.73 3.74 3.74 3.74 3.74 3.74
1E−07 5.75 3.69 3.54 3.71 3.66 3.66 3.66 3.66 3.66
1E−08 5.75 3.69 3.54 3.67 3.66 3.66 3.66 3.66 3.66
1E−09 5.75 3.69 3.54 3.67 3.66 3.66 3.66 3.66 3.66
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over [0,1], and the scale parameter σ at 128 regularly-spaced values
over (0,1]. The affine parameters were computed analytically [9].

The formlet and shapelet pursuit algorithms were initialized with
the same embryonic ellipses, and were governed by a minimization of
the L2 error (Eq. (11)) over the visible points of the curves only. While
pursuit is based on a fixed 1:1 correspondence between points on the
target and model curves, we measure performance using the L2

Hausdorff distance to avoid potential dependence of the evaluation
upon the parameterization of the curves. Specifically, we define the
error between the target shape and the model as the average mini-
mum distance of a point on one of the shapes to the other shape:

ξH Γobs; Γk
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∫1
0
1
2

min
t′∈ 0;1½ Þ

Γobs tð Þ−Γk t′ð Þ
��� ���2 þ min

t′∈ 0;1½ Þ
Γobs t′ð Þ−Γk tð Þ
��� ���2� �

dt

s
:

ð17Þ

We measured the residual error between the model and target for
both the visible and occluded portions of the shapes. Performance on
the occluded portion, where the model is under-constrained by the
data, reveals how well the structure of the model captures properties
of natural shapes.

Implementations for both the formlet and shapelet models are
available at www.elderlab.yorku.ca/formlets.

6.1. Results

Fig. 8 shows some example qualitative results for this experiment.
While shapelet pursuit introduces topological errors in both visible
and occluded regions, formlet pursuit remains topologically valid, as
predicted.

Fig. 9 shows quantitative results for this experiment. While the
shapelet and formlet models achieve comparable error on the visible
portions of the boundaries, the error is substantially lower for the
formlet representation on the occluded portions. This suggests that
the structure of the formlet model better captures regularities in the
shapes of natural objects. We believe that the two principal reasons
for this are a) respecting the topology of the shape prunes off many
inferior completion solutions and b) by working in the image space,
rather than arc length, the formlet model is better able to capture
important regional properties of shape.

7. Discussion

7.1. Formlet parameter distributions

The focus of this paper is to establish the appropriate structural
properties for a generative model of planar shape. To ultimately
apply this representation to problems such as object detection and
recognition, statistical models over this representation must be
developed. One small step is to consider the distribution of
formlet parameters selected in pursuit of the shapes in our animal
dataset.

Fig. 10 shows how the means of the formlet parameters vary as
pursuit unfolds. We observe that scales decrease over time (a),
reflecting a coarse-to-fine approximation. Gains also decrease over
time (b), although when normalized by scale (c), this decline is mod-
erated substantially. Finally, formlet locations are biased to the centre
of the shape and are roughly isotropic (d), with a slight bias to the
lower field, presumably reflecting the additional details required to
represent the legs of the animals.

Table 4
Average residual (×1000) for a 32-formlet model, as a function of dictionary size n and
number of descents m.

m/n 642×16 582×14 512×13 452×11 382×10 322×8 262×6 192×5

0 8.0 6.5 8.1 9.5 9.3 14.0 23.5 28.1
1 3.7 4.7 4.8 5.8 5.0 5.9 7.4 14.0
5 3.6 3.8 4.7 5.9 4.2 6.4 7.4 7.1
10 4.1 3.7 3.8 45 4.5 6.1 6.9 6.4
15 3.6 3.9 4.1 4.0 4.1 5.7 6.7 8.0
20 3.4 3.8 3.8 4.5 4.1 4.8 6.6 8.0
25 3.7 3.8 3.7 4.5 4.2 4.8 6.5 7.4
30 3.4 3.9 3.7 4.4 4.2 4.4 5.7 7.5

Fig. 8. Examples of 30% occlusion pursuit with shapelets (red) and formlets (blue) for k=0, 2, 4, 8, 6, and 32. Solid lines indicate visible contour, dashed lines indicate occluded
contour.
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7.2. Alternative formlet bases

In this paper we have chosen a particular Gabor-like formlet
representation (Eq. (3)) that confers several key properties:

1. The family of formlets forms a self-similar scale space.
2. Each formlet acts within a σ-ball around a specific location ζ,

converging to the identity as |z−ζ|→∞.
3. The mapping is smooth everywhere except at ζ, where it is C0.
4. Deformation is isotropic and radial around ζ.

There are of course other formulations that would also satisfy
these properties. Here we consider two specific alternatives and
compare them with the Gabor formulation.

7.3. Gaussian derivative formlets

We simplify the original Gabor formulation of Eq. (3) by replacing
the sinusoidal factor with a first-order Taylor series approximation,
yielding:

f z; ζ ;σ ;αð Þ ¼ ζ þ z−ζ
z−ζj jρ z−ζj jð Þ; where ð18Þ

ρ rð Þ ¼ r þ α
2πr
σ

exp
−r2

σ2

 !
: ð19Þ

Note that the deformation term of the radial deformation function
ρ(r) is proportional to the first Gaussian derivative in r.
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Fig. 9. Results of occlusion pursuit evaluation. Black denotes error for Γ0(t), the affine-fit ellipse.
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f is a diffeomorphism iff ρ′(r)>0 everywhere:

ρ′ rð Þ ¼ 1þ exp
−r2

σ2

 !
2πα
σ

1−2r2

σ2

" #
> 0: ð20Þ

For αb0, the minimum is attained when r=0:

⇒α > − 1
2π

σ : ð21Þ

For α>0, by solving ρ″(r)=0 it can be shown that the minimum is
attained when r ¼ ffiffiffiffiffiffiffiffi

3=2
p

σ . Substituting into Eq. (20) then yields

αb
exp 3=2ð Þ

4π
σ : ð22Þ

Thus f is a diffeomorphism iff α∈ σ
2π −1; 12 exp 3=2ð Þ� �

:

7.4. Spline formlets

Both the Gabor and Gaussian formlets have infinite support, which
increases computation time and limits the degree to which formlets
can be computed in parallel. To achieve strictly compact support we
impose the constraint that ρ(r;σ)=r⇔ f(z)=z whenever r>σ. To

guarantee smoothness, we require ρ(σ;σ)=σ and ρ′(σ;σ)=1 and
to achieve continuity at ζ we require ρ(0)=0. The simplest spline
meeting all these conditions is:

ρ r;σð Þ ¼ r þ α
r
σ2 r−σð Þ2 for r≤σ

r for r > σ

(
ð23Þ

We derive the diffeomorphism constraints as before:

ρ′ rð Þ ¼ 1þ α
σ2 r−σð Þ2 þ r⋅2 r−σð Þ
h i

> 0 ð24Þ

⇒
α
σ2 3r2−4rσ þ σ2
h i

> −1: ð25Þ

For αb0, the minimum is attained when r=0, yielding α>−1.
For α>0, by solving ρ″(r)=0 it can be shown that the minimum is

attained when r=2σ/3. Substituting into Eq. (24) then yields αb3.
Thus f is a diffeomorphism iff α∈(−1,3).

7.5. Comparison of formlet bases

Figs. 11–13 show the radial deformation functions, examples of
pursuit and rate of convergence for these three different formula-
tions. Empirically, we find that the Gabor formulation achieves a
better rate of convergence on the animal dataset than the competing
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Gabor

0 5 10 15
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10

15

Fig. 11. Radial deformation function for three formlet bases.

Fig. 12. Pursuit of an example shape with Gabor (top row), Gaussian (middle row) and spline (bottom row) bases for K=1, 2, 4, 8, and 16.
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Fig. 13. Mean L2 Hausdorff error for formlet pursuit over animal dataset with three
different formlet bases.
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formulations, although at this stage we do not have a clear theoretical
explanation for this result.

8. Conclusion

We have developed a novel generative model of planar shape
that satisfies a number of essential properties. In this model, com-
plex shapes are seen as the evolution of a simple embryonic shape
by successive application of simple diffeomorphic transformations
of the plane called formlets. The system is both complete and closed,
since arbitrary shapes can be modeled, and generated shapes are
guaranteed to be topologically valid. This means that the model
has the potential to support accurate probabilistic modeling. We
have demonstrated a novel dictionary descent formlet pursuit algo-
rithm that selects formlets to efficiently approximate given target
shapes. Evaluation of the formlet pursuit model on the problem of
shape completion revealed that the model is better able to approx-
imate parts of shapes missing due to occlusion than a competing
contour-based method. Our animal object dataset, experimental
results, example movies and implementations for both the formlet
and shapelet models are available at www.elderlab.yorku.ca/
formlets.

8.1. Future work

We hope to extend the present work in a number of ways. First,
we would like to generalize our definition of formlets to allow for
anisotropic deformation that could efficiently model elongated
parts such as animal limbs. Second, we would like to develop prob-
abilistic models over the formlet representation. Finally, we are in-
terested in using the formlet pursuit algorithm for contour
grouping, using detected fragments to generate predictions for
where other fragments of the same object boundary might be
found.
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Appendix A. Computation of optimal gain

Since the formlet deformation of Eq. (3) is linear in the gain α,
given fixed location ζ and scale σ parameters, the gain that mini-
mizes the L2 deviation from the target shape can be computed ana-
lytically. Specifically, suppose that the observed curve Γobs is
currently approximated by Γk−1. For given formlet location and
scale parameters ζ and σ, we define the optimal unconstrained gain
α∗ for formlet fk as:

α� ¼ argmin ξ Γobs; f Γk−1
; ζ ;σ ;α

� �� �
ðA:1Þ

where, for curves a and b, ξ(Γa,Γb) denotes the L2 error metric

∫1
0Re Γa tð Þ−Γb tð Þ

� �2 þ Im Γa tð Þ−Γb tð Þ
� �2

dt ðA:2Þ

induced by the inner product:

Γa; Γb
D E

¼ ∫1
0Re Γa tð ÞRe Γb tð Þ þ Im Γa tð ÞIm Γb tð Þdt: ðA:3Þ

Using Eq. (13), we differentiate ξwith respect to α and set to zero:

∂
∂α



Γobs−f Γk−1

� �


2 ¼ ∂
∂α



Γres−αg




2 ðA:4Þ

¼ ∂
∂α




Γres


2−2α Γres; g
� �þ α2




g


2� �
ðA:5Þ

¼ 2 Γres; g
� �

−αkgk2
� �

¼ 0

⇒α ¼ Γres; g
� �


g


2

ðA:6Þ

where we used the shorthand g=g(Γk−1−ζ;σ),Γres=Γobs−Γk−1.
As a result, given fixed ζ and σ, the optimal unconstrained gain α∗

that maximally reduces the L2 error between the observed curve Γobs

and current approximation Γk−1 is given by

α� ¼
Γobs−Γk−1

; g Γk−1−ζ ;σ
� �D E

dt������g Γk−1−ζ ;σ
� �������2

2

: ðA:7Þ

Note that in general Eq. (A.7) may produce an optimal gain out-
side the diffeomorphism bounds of Eq. (7). However, the optimal
gain that satisfies the constraint is simply the unconstrained gain α*
thresholded by the diffeomorphism constraints, as described in
Section 4.1.

Appendix B. Jacobian computation for nonlinear least
squares minimization

The dictionary descent optimization method described in
Section 4.2 employs the MATLAB gradient descent method lsqnonlin
to determine the location parameter ζ and scale parameter σ.
lsqnonlin uses the Jacobian of the error function in the unknown pa-
rameters to iterate toward the local minimum. The method per-
forms best if an analytic form of the Jacobian can be provided.
Note that since the optimal gain αc

∗ is determined analytically
(Eq. (15)), this value must be used in all computations of the Jaco-
bian in order to determine locally optimally values for the other
parameters.

Combining Eqs. (11) and (13), and using r=|Γk−1−ζ |, the error
function can be written as

ξ Γobs; ΓK
� �

¼






 
Γobs−f Γk−1

� �





2

¼





Γobs−Γk−1−α�

c
Γk−1−ζ

r
sin

2πr
σ

� �
exp

−r2

σ2

 !





2

:

Now defining

Γres ¼ Γobs−Γk−1

and

G ¼ G r;σð Þ ¼ 1
r
sin

2πr
σ

� �
exp

−r2

σ2

 !
;

11J.H. Elder et al. / Image and Vision Computing 31 (2013) 1–13



Author's personal copy

and using x and y subscripts to denote real and imaginary compo-
nents, we can rewrite this expression as

ξ Γobs; ΓK
� �

¼ ∫1
0 Γresx tð Þ� �

−α�
c Γk−1

x tð Þ−ζ x

� �
G

h i2
dt

þ ∫1
0 Γresy tð Þ
� �

−α�
c Γk−1

y tð Þ−ζy

� �
G

h i2
dt

≡∫1
0 ξx tð Þ2 þ ξy tð Þ2
� �

dt:

Since the error is a function of the optimal gain αc
∗ and αc

∗ is a func-
tion of the location parameter ζ and the scale parameter σ, we will
need the partial derivative of αc

∗ with respect to these two parame-
ters. From Eq. (15), we have

α�
c ¼

αl for α�
< αl

α� for αl≤α�≤αu
αu for α�

> αu;

8<
:

where

αl ¼ − 2πð Þ−1σ

and

αu≈0:1956σ ;

and α∗ is given by Eq. (14). Thus we have

∂α�
c

∂σ ¼
− 2πð Þ−1 for α�

< αl
∂α�

∂σ for αl ≤α�≤αu

0:1956 for α�
> αu

8>><
>>:

∂α�
c

∂ζ x
¼

0 for α�
< αl

∂α�

∂ζx
for αl ≤ α�≤αu

0 for α�
> αu

8>><
>>:

∂α�
c

∂ζy
¼

0 for α�
< αl

∂α�

∂ζy
for αl ≤ α�≤αu

0 for α�
> αu:

8>><
>>:

Thus to determine the partial derivatives of the constrained gain
αc
∗, we must compute the partial derivatives of the unconstrained

gain α∗, which is defined by Eq. (14):

α� ¼
Γobs−Γk−1

; g Γk−1−ζ ;σ
� �D E

dt������g Γk−1−ζ ;σ
� �������2

2

where we have used

g Γk−1−ζ ;σ
� �

¼ Γk−1−ζ
� �1

r
sin

2πr
σ

� �
exp

−r2

σ2

 !
¼ Γk−1−ζ
� �

G rð Þ:

ðB:1Þ

Computing the partial derivatives with respect to the scale σ
parameter and location parameters ζx and ζy, we obtain:

∂α�
∂σ ¼

∂
∂σ Γres; g
� �� �

kgk2− Γres; g
� � ∂

∂σ kgk
2

kgk4 ;

where:

∂
∂σ Γres; g
� � ¼ ∂

∂σ ∫1

0
Γresx tð Þ Γk−1

x tð Þ−ζx

� �
Gþ Γresy tð Þ Γk−1

y tð Þ−ζy

� �
Gdt

¼ ∫1

0
Γres tð Þ; Γk−1 tð Þ−ζ
D E ∂G

∂σ dt

∂
∂σ kgk2 ¼ ∂

∂ζx
∫1

0
Γk−1
x tð Þ−ζx

� �
G

h i2 þ Γk−1
y tð Þ−ζy

� �
G

h i2
dt

¼ ∫1

0
Γk−1 tð Þ−ζ
��� ���·2G ∂G

∂σ dt

∂α�
∂ζx

¼
∂

∂ζx
Γres; g
� �� �

kgk2− Γres; g
� � ∂

∂ζx
kgk2

kgk4 ;

where:

∂
∂ζ x

Γres; g
� � ¼ ∂

∂ζ x
∫1

0
Γresx tð Þ Γk−1

x tð Þ−ζ x

� �
Gþ Γresy tð Þ Γk−1

y tð Þ−ζy

� �
Gdt

¼ ∫1

0
Γresx tð Þ −Gþ Γk−1

x tð Þ−ζ x

� � ∂G
∂ζ x


 �
þ Γresy tð Þ Γk−1

y tð Þ−ζy

� � ∂G
∂ζ x


 �
dt

∂
∂ζ x

kgk2 ¼ ∂
∂ζx

∫1

0
Γk−1
x tð Þ−ζ x

� �
G

h i2 þ Γk−1
y tð Þ−ζy

� �
G

h i2
dt

¼ ∫1

0
2 Γk−1

x tð Þ−ζ x

� �
G

h i
−Gþ Γk−1

x tð Þ−ζ x

� � ∂G
∂ζ x


 �

þ 2G
∂G
∂ζ x

Γk−1
y tð Þ−ζy

� �2
dt

∂α�
∂ζy

¼
∂

∂ζy
Γres; g
� �� �

kgk2− Γres; g
� � ∂

∂ζy
kgk2

kgk4 ;

where:

∂
∂ζy

Γres; g
� � ¼ ∂

∂ζy
∫1

0
Γresx tð Þ Γk−1

x tð Þ−ζ x

� �
Gþ Γresy tð Þ Γk−1

y tð Þ−ζy

� �
Gdt

¼∫1

0
Γresx tð Þ Γk−1

x tð Þ−ζ x

� � ∂G
∂ζy

" #
þ Γresy tð Þ −Gþ Γk−1

y tð Þ−ζy

� � ∂G
∂ζy

" #
dt

∂
∂ζy

kgk2 ¼ ∂
∂ζy

∫1

0
Γk−1
x tð Þ−ζ x

� �
G

h i2 þ Γk−1
y tð Þ−ζy

� �
G

h i2
dt

¼ ∫1

0
2G

∂G
∂ζy

Γk−1
y tð Þ−ζy

� �2
þ 2 Γk−1

y tð Þ−ζy

� �
G

h i
−Gþ Γk−1

y tð Þ−ζy

� � ∂G
∂ζy

" #
dt:

We are now ready to compute the Jacobian matrix. From Eq. (B.1)
we have that:

ξx tið Þ ¼ Γresx tið Þ−α Γk−1
x tið Þ−ζx

� �
G

ξy tið Þ ¼ Γresy tið Þ−α Γk−1
y tið Þ−ζy

� �
G

Thus,

∂ξx tið Þ
∂σ ¼ − Γk−1

x tið Þ−ζ x

� � ∂α
∂σ Gþ α

∂G
∂σ


 �
ðB:2Þ

∂ξy tið Þ
∂σ ¼ − Γk−1

y tið Þ−ζy

� � ∂α
∂σ Gþ α

∂G
∂σ


 �
ðB:3Þ

∂ξx tið Þ
∂ζ x

¼ − ∂α
∂ζx

Γk−1
x tið Þ−ζx

� �
Gþ αG−α Γk−1

x tið Þ−ζx

� � ∂G
∂ζ x

ðB:4Þ

∂ξy tið Þ
∂ζx

¼ − Γk−1
y tið Þ−ζy

� � ∂α
∂ζx

Gþ α
∂G
∂ζx


 �
ðB:5Þ
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∂ξx tið Þ
∂ζy

¼ − Γk−1
x tið Þ−ζ x

� � ∂α
∂ζy

Gþ α
∂G
∂ζy

" #
ðB:6Þ

∂ξy tið Þ
∂ζy

¼ − ∂α
∂ζy

Γk−1
y tið Þ−ζy

� �
Gþ αG−α Γk−1

y tið Þ−ζy

� � ∂G
∂ζy

ðB:7Þ

where for the Gabor basis, we have:

∂G
∂σ ¼ exp − r2

σ2

 !
−2π
σ2 cos

2πr
σ

� �
þ 2r
σ3 sin

2πr
σ

� �
 �

∂G
∂ζ x

¼ exp − r2

σ2

 !
Γk−1
x tið Þ−ζ x

� �
r

− 2π
σr

cos
2πr
σ

� �
þ 2
σ2 sin

2πr
a

� �
þ 1
r2

sin
2πr
σ

� �
 �

∂G
∂ζy

¼ exp − r2

σ2

 !
Γk−1
y tið Þ−ζy

� �
r

− 2π
σr

cos
2πr
σ

� �
þ 2
σ2 sin

2πr
σ

� �
þ 1
r2

sin
2πr
σ

� �
 �
:

It is straightforward to show that Eqs. (B.2)–(B.7) also apply to the
Gaussian and Spline bases (Section 7.2), with suitable definitions of
G(r;σ):Gaussian basis:

G r;σð Þ ¼ 2π
σ

exp
−r2

σ2

 !

∂G
∂σ ¼ 2π exp

−r2

σ2

 !
−1
σ2 þ 2r2

σ4

" #

∂G
∂ζx

¼ 4π
σ3 exp

−r2

σ2

 !
Γk−1
x −ζx

� �

∂G
∂ζy

¼ 4π
σ3 exp

−r2

σ2

 !
Γk−1
y −ζy

� �

Spline basis:

G r;σð Þ ¼ r−σð Þ2
σ2

∂G
∂σ ¼ −2

σ3 r−σð Þ2− 2
σ2 r−σð Þ

∂G
∂ζx

¼ −2
rσ2 r−σð Þ Γk−1

x −ζx

� �

∂G
∂ζy

¼ −2
rσ2 r−σð Þ Γk−1

y −ζy

� �
:
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